2.1 从性能角度初探并发编程 ========================== |image0| 1. 基本概念 ----------- 在开始讲解理论知识之前,先过一下几个基本概念。虽然咱是进阶教程,但我也希望写得更小白,更通俗易懂。 ``串行``\ :一个人在同一时间段只能干一件事,譬如吃完饭才能看电视; ``并行``\ :一个人在同一时间段可以干多件事,譬如可以边吃饭边看电视; 在Python中,\ ``多线程`` 和 ``协程`` 虽然是严格上来说是串行,但却比一般的串行程序执行效率高得很。 一般的串行程序,在程序阻塞的时候,只能干等着,不能去做其他事。就好像,电视上播完正剧,进入广告时间,我们却不能去趁广告时间是吃个饭。对于程序来说,这样做显然是效率极低的,是不合理的。 当然,学完这个课程后,我们就懂得,利用广告时间去做其他事,灵活安排时间。这也是我们\ ``多线程``\ 和\ ``协程`` 要帮我们要完成的事情,内部合理调度任务,使得程序效率最大化。 虽然 ``多线程`` 和 ``协程`` 已经相当智能了。但还是不够高效,最高效的应该是一心多用,边看电视边吃饭边聊天。这就是我们的 ``多进程`` 才能做的事了。 为了更帮助大家更加直观的理解,在网上找到两张图,来生动形象的解释了多线程和多进程的区别。(侵删) - ``多线程``\ ,交替执行,另一种意义上的串行。 .\ |image1| - ``多进程``\ ,并行执行,真正意义上的并发。 .\ |image2| 2. 单线程VS多线程VS多进程 ------------------------- 文字总是苍白无力的,千言万语不如几行代码来得孔武有力。 首先,我的实验环境配置如下 |image3| **注意** 以下代码,若要理解,对小白有如下知识点要求: 1. 装饰器的运用 2. 多线程的基本使用 3. 多进程的基本使用 当然,看不懂也没关系,主要最后的结论,能让大家对单线程、多线程、多进程在实现效果上有个大体清晰的认识,达到这个效果,本文的使命也就完成了,等到最后,学完整个系列,不妨再回头来理解也许会有更深刻的理解。 下面我们来看看,单线程,多线程和多进程,在运行中究竟孰强孰弱。 -------------- 开始对比之前,首先定义四种类型的场景 - CPU计算密集型 - 磁盘IO密集型 - 网络IO密集型 - 【模拟】IO密集型 为什么是这几种场景,这和\ ``多线程`` ``多进程``\ 的适用场景有关。结论里,我再说明。 .. code:: python # CPU计算密集型 def count(x=1, y=1): # 使程序完成150万计算 c = 0 while c < 500000: c += 1 x += x y += y # 磁盘读写IO密集型 def io_disk(): with open("file.txt", "w") as f: for x in range(5000000): f.write("python-learning\n") # 网络IO密集型 header = { 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.139 Safari/537.36'} url = "https://www.tieba.com/" def io_request(): try: webPage = requests.get(url, headers=header) html = webPage.text return except Exception as e: return {"error": e} # 【模拟】IO密集型 def io_simulation(): time.sleep(2) 比拼的指标,我们用时间来考量。时间耗费得越少,说明效率越高。 为了方便,使得代码看起来,更加简洁,我这里先定义是一个简单的 ``时间计时器`` 的装饰器。 如果你对装饰器还不是很了解,也没关系,你只要知道它是用于 计算函数运行时间的东西就可以了。 .. code:: python def timer(mode): def wrapper(func): def deco(*args, **kw): type = kw.setdefault('type', None) t1=time.time() func(*args, **kw) t2=time.time() cost_time = t2-t1 print("{}-{}花费时间:{}秒".format(mode, type,cost_time)) return deco return wrapper 第一步,先来看看单线程的 .. code:: python @timer("【单线程】") def single_thread(func, type=""): for i in range(10): func() # 单线程 single_thread(count, type="CPU计算密集型") single_thread(io_disk, type="磁盘IO密集型") single_thread(io_request,type="网络IO密集型") single_thread(io_simulation,type="模拟IO密集型") 看看结果 :: 【单线程】-CPU计算密集型花费时间:83.42633867263794秒 【单线程】-磁盘IO密集型花费时间:15.641993284225464秒 【单线程】-网络IO密集型花费时间:1.1397218704223633秒 【单线程】-模拟IO密集型花费时间:20.020972728729248秒 第二步,再来看看多线程的 .. code:: python @timer("【多线程】") def multi_thread(func, type=""): thread_list = [] for i in range(10): t=Thread(target=func, args=()) thread_list.append(t) t.start() e = len(thread_list) while True: for th in thread_list: if not th.is_alive(): e -= 1 if e <= 0: break # 多线程 multi_thread(count, type="CPU计算密集型") multi_thread(io_disk, type="磁盘IO密集型") multi_thread(io_request, type="网络IO密集型") multi_thread(io_simulation, type="模拟IO密集型") 看看结果 :: 【多线程】-CPU计算密集型花费时间:93.82986998558044秒 【多线程】-磁盘IO密集型花费时间:13.270896911621094秒 【多线程】-网络IO密集型花费时间:0.1828296184539795秒 【多线程】-模拟IO密集型花费时间:2.0288875102996826秒 第三步,最后来看看多进程 .. code:: python @timer("【多进程】") def multi_process(func, type=""): process_list = [] for x in range(10): p = Process(target=func, args=()) process_list.append(p) p.start() e = process_list.__len__() while True: for pr in process_list: if not pr.is_alive(): e -= 1 if e <= 0: break # 多进程 multi_process(count, type="CPU计算密集型") multi_process(io_disk, type="磁盘IO密集型") multi_process(io_request, type="网络IO密集型") multi_process(io_simulation, type="模拟IO密集型") 看看结果 :: 【多进程】-CPU计算密集型花费时间:9.082211017608643秒 【多进程】-磁盘IO密集型花费时间:1.287339448928833秒 【多进程】-网络IO密集型花费时间:0.13074755668640137秒 【多进程】-模拟IO密集型花费时间:2.0076842308044434秒 3. 性能对比成果总结 ------------------- 将结果汇总一下,制成表格。 |image4| 我们来分析下这个表格。 首先是\ ``CPU密集型``\ ,多线程以对比单线程,不仅没有优势,显然还由于要不断的加锁释放GIL全局锁,切换线程而耗费大量时间,效率低下,而多进程,由于是多个CPU同时进行计算工作,相当于十个人做一个人的作业,显然效率是成倍增长的。 然后是IO密集型,\ ``IO密集型``\ 可以是\ ``磁盘IO``\ ,\ ``网络IO``\ ,\ ``数据库IO``\ 等,都属于同一类,计算量很小,主要是IO等待时间的浪费。通过观察,可以发现,我们磁盘IO,网络IO的数据,多线程对比单线程也没体现出很大的优势来。这是由于我们程序的的IO任务不够繁重,所以优势不够明显。 所以我还加了一个「\ ``模拟IO密集型``\ 」,用\ ``sleep``\ 来模拟IO等待时间,就是为了体现出多线程的优势,也能让大家更加直观的理解多线程的工作过程。单线程需要每个线程都要\ ``sleep(2)``\ ,10个线程就是\ ``20s``\ ,而多线程,在\ ``sleep(2)``\ 的时候,会切换到其他线程,使得10个线程同时\ ``sleep(2)``\ ,最终10个线程也就只有\ ``2s``. 可以得出以下几点结论 - 单线程总是最慢的,多进程总是最快的。 - 多线程适合在IO密集场景下使用,譬如爬虫,网站开发等 - 多进程适合在对CPU计算运算要求较高的场景下使用,譬如大数据分析,机器学习等 - 多进程虽然总是最快的,但是不一定是最优的选择,因为它需要CPU资源支持下才能体现优势 -------------- |image5| .. |image0| image:: http://image.iswbm.com/20200602135014.png .. |image1| image:: https://i.loli.net/2018/05/08/5af1781dbad7c.jpg .. |image2| image:: https://i.loli.net/2018/05/08/5af1781f05c29.jpg .. |image3| image:: http://image.iswbm.com/20190112205155.png .. |image4| image:: http://image.iswbm.com/20190112204930.png .. |image5| image:: http://image.iswbm.com/20200607174235.png